65 research outputs found

    Performance of ALICE pixel prototypes in high energy beams

    Full text link
    The two innermost layers of the ALICE inner tracking system are instrumented with silicon pixel detectors. Single chip assembly prototypes of the ALICE pixels have been tested in high energy particle beams at the CERN SPS. Detection efficiency and spatial precision have been studied as a function of the threshold and the track incidence angle. The experimental method, data analysis and main results are presented.Comment: 10 pages, 9 figures, contribution to PIX2005 Workshop, Bonn (Germany), 5-8 September 200

    Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector

    Full text link
    The silicon pixel detector (SPD) of the ALICE experiment in preparation at the Large Hadron Collider (LHC) at CERN is designed to provide the precise vertex reconstruction needed for measuring heavy flavor production in heavy ion collisions at very high energies and high multiplicity. The SPD forms the innermost part of the Inner Tracking System (ITS) which also includes silicon drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD have been tested at the CERN SPS using high energy proton/pion beams in 2002 and 2003. We report on the experimental determination of the spatial precision. We also report on the first combined beam test with prototypes of the other ITS silicon detector technologies at the CERN SPS in November 2004. The issue of SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International Position Sensitive Detectors Conference, Liverpool, Sept. 200

    The ALICE Silicon Pixel Detector System (SPD)

    Get PDF
    The ALICE silicon pixel detector (SPD) comprises the two innermost layers of the ALICE inner tracker system. The SPD includes 120 detector modules (half-staves) each consisting of 10 ALICE pixel chips bump bonded to two silicon sensors and one multi-chip read-out module. Each pixel chip contains 8192 active cells, so that the total number of pixel cells in the SPD is ≈ 107. The on-detector read-out is based on a multi-chip-module containing 4 ASICs and an optical transceiver module. The constraints on material budget and detector module dimensions are very demanding

    The silicon pixel detector (SPD) for the ALICE experiment

    Get PDF
    The ALICE silicon pixel detector (SPD) constitutes the two innermost layers of the inner tracking system (ITS). The basic building block of the SPD is the half-stave carrying two detector ladders. The half-stave is equipped with a multi-chip module (MCM) and an optical fibre link for control and readout. A 5-layer aluminium/polyimide bus ensures the distribution of power and signals on each half-stave. The half-staves are mounted on a light-weight carbon-fibre structure with an integrated evaporative cooling system. An overview of the SPD development and the current status of the construction are presented

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Transverse momentum spectra of charged particles in proton-proton collisions at s=900\sqrt{s} = 900 GeV with ALICE at the LHC

    Get PDF
    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at s=900\sqrt{s} = 900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (η<0.8)(|\eta|<0.8) over the transverse momentum range 0.15<pT<100.15<p_{\rm T}<10 GeV/cc. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for η<0.8|\eta|<0.8 is <pT>INEL=0.483±0.001\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc and \left_{\rm NSD}=0.489\pm0.001 (stat.) ±0.007\pm0.007 (syst.) GeV/cc, respectively. The data exhibit a slightly larger <pT>\left<p_{\rm T}\right> than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.Comment: 20 pages, 8 figures, 2 tables, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/390

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Infrared laser testing of ALICE silicon pixel detector assemblies

    No full text

    Status of the Medaustron Ion Beam Therapy centre

    No full text
    MedAustron is a synchrotron based light-ion beam therapy centre for cancer treatment as well as for clinical and non-clinical research currently in its construction phase. The accelerator design is based on the CERN-PIMMS study and its technical implementation by CNAO. This paper presents a status overview over the whole project detailing the achieved progress of the building construction & technical infrastructure installation in Wiener Neustadt, Austria, as well as of the accelerator development, performed at CERN and partially at PSI. The design and procurement status and future planning of the various accelerator components is elaborated

    Profile grid monitor and first measurement results at the MedAustron accelerator

    No full text
    MedAustron is a synchrotron based ion beam therapy center located in Wiener Neustadt/Austria. The MedAustron accelerator design is based on CERN’s Proton-Ion Medical Machine Study (PIMMS) [1] and is currently in the accelerator installation and beam commissioning phase. One of the basic measurements for commissioning of an accelerator is also beam profile measurement. The beam at the end of the Low Energy Beam Transport (LEBT) line and in the Medium Energy Beam Transport (MEBT) line (after the fast deflector) is pulsed. Due to pulsed beam the Wire Scanner Monitor (WSX) cannot be used. To measure a beam profile at these locations a new monitor has been developed – Profile Grid Monitor (PGX). The PGX is also known as harp grid monitor and it contains 64 wires positioned vertically and 64 wires horizontally for measuring the beam profile in both transverse planes. The PGX acquires the current of all 128 wires simultaneously, converts it to voltage, digitizes the values and processes the converted data. The last part of the PGX is a graphical interface for control of the PGX and the display of the beam profile
    corecore